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Catalytic enantioselective Friedel–Crafts alkylation at the
2-position of indole with simple enones
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Abstract—A procedure for the enantioselective alkylation of indole at the 2-position with simple non-chelating enones is described
for the first time. Reaction between 4,7-dihydroindole and enones in the presence of zirconium(IV)–BINOL complexes, followed by
a p-benzoquinone oxidation gives indoles alkylated at the 2-position with good yields and moderate enantioselectivities.
� 2007 Elsevier Ltd. All rights reserved.
The indole nucleus has long been of great interest to syn-
thetic chemists owing to its ubiquity in a large number
of biologically active alkaloids and pharmaceutical
agents.1 Since the 3-position of indole is the preferred
site for the electrophilic substitution reaction, the intro-
duction of functionalized alkyl frameworks at this posi-
tion by means of a Friedel–Crafts reaction involving the
use of various electrophilic reagents constitutes a well
established strategy.2 Only recently Saraçoglu et al. have
described the functionalization of the less reactive 2-
position by means of a Friedel–Crafts reaction.3 The
access to the 2-position of the indole nucleus is achieved
by using 4,7-dihydroindole as the nucleophilic reaction
component followed by a p-benzoquinone oxidation to
regenerate the aromaticity of the indole nucleus. The
use of 4,7-dihydroindole instead of indole explains the
observed change of regioselectivity as it is known that
indole undergoes substitution at the 3-position, whereas
pyrrole derivatives give reaction at the 2-position.4

In the last years, attention has been focused on the cat-
alytic enantioselective functionalization of the indole
nucleus. Taking advantage of the reactivity of the 3-
position of the indole nucleus several electrophiles have
been introduced at this position via a Friedel–Crafts
reaction using both bidentate chelating carbonyl sub-
strates5 as well as the most challenging non-chelating
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simple a,b-unsaturated carbonyl compounds.6,7 How-
ever, only very recently, Evans et al. have reported
an enantioselective functionalization of the less reactive
2-position.8 Following the methodology of Saraçoglu,3

these authors have used 4,7-dihydroindole as the nucleo-
philic reaction component and a,b-unsaturated 2-acyl
imidazoles as bidentate chelating electrophile, followed
by a p-benzoquinone oxidation.

In this Letter, we wish to present our results on the func-
tionalization of the indole nucleus at the 2-position by
an enantioselective Friedel–Crafts reaction of a,b-unsat-
urated ketones with 4,7-dihydroindole9 catalyzed by a
chiral BINOL–zirconium(IV) tert-butoxide complex,10

followed by a p-benzoquinone oxidation.

The reaction of 4,7-dihydroindole (1) with enone 2a was
chosen to optimize the reaction conditions. Several chi-
ral Lewis acid catalysts, generated in situ from metal
alkoxides and (R)-BINOL type ligands, were evaluated
as shown in the illustrated reaction (Scheme 1), and
the results are summarized in Table 1.

All (R)-BINOL ligands (L1–L5) were able to catalyze
the reaction at acceptable rates and in good yield but
with variable enantioselectivities. Using 20 mol % of
Ti(OiPr)3 and 20 mol % of ligand L1 (entry 1), in CH2Cl2
at room temperature the reaction between 4,7-dihydro-
indole (1) with enone 2a, took place in 2.5 h giving
2-(1-methyl-3-phenyl-3-propanone)-1H-indole (3a) in
good yield (85%) but with a low enantiomeric excess
(19%), while in the presence of Zr(OtBu)4 4,7-dihydroin-
dole (1) reacted faster (within 0.75 h) with enone 2a,
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Table 1. Ligand evaluation and optimization of the enantioselective
Friedel–Crafts reaction of 1 with 2aa according to Scheme 1

Entry Ligand Metal alkoxide Time (h) Yield (%)b ee (%)c

1 L1 Ti(OiPr)4 2.5 85 19
2 L1 Zr(OtBu)4 0.7 74 59
3 L2 Zr(OtBu)4 0.5 81 14
4 L3 Ti(OiPr)4 2.5 93 2
5 L3 Zr(OtBu)4 0.5 80 8
6 L4 Zr(OtBu)4 0.5 71 19
7 L5 Zr(OtBu)4 1 79 71

a 20 mol % of (R)-ligand and 20 mol % of metal alkoxide, in dichlo-
romethane at room temperature.

b Isolated yield of 3a.
c Determined by chiral HPLC analysis. (R)-configuration tentatively

assigned on the assumption of a uniform mechanistic pathway with
regard to indole and pyrrole (see Ref. 6g).

Table 2. Enantioselective Friedel–Crafts reaction of 4,5-dihidroindole
(1) with enones 2 catalyzed by L5–Zr(OtBu)4

a

+ R2 R1

O

N
H

1 2 3

N
H

1. L5, Zr(OtBu)4,

CH2Cl2, rt

R2

R1

O

2. p-benzoquinone

Entry 2 R1 R2 Time
(h)

3 Yield
(%)b

ee
(%)c

1 2a Ph Me 1 3a 79 71
2 2b Ph Et 2.5 3b 89 60
3 2c p-Me-C6H4 Me 2 3c 73 78
4 2d m-MeC6H4 Me 2 3d 69 51
5 2e p-MeO-C6H4 Me 2 3e 88 64
6 2f 3,4-Me2C6H3 Me 2 3f 89 58
7 2g p-F-C6H4 Me 0.75 3g 86 53
8 2h p-Br-C6H4 Me 0.75 3h 79 50
9 2i 2-Naphthyl Me 1 3i 79 40

10 2j 2-Thienyl Me 1.5 3j 95 69
11 2k 2-Furyl Me 0.5 3k 72 59

a 20 mol % of (R)-L5 and 20 mol % of Zr(OtBu)4, in dichloromethane
at room temperature.

b Isolated yield of 3.
c Determined by chiral HPLC analysis. (R)-configuration tentatively

assigned on the assumption of a uniform mechanistic pathway with
regard to indole and pyrrole (see Ref. 6g).
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Scheme 2. Cyclization of compound 3a to 4a.
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Scheme 1. Friedel–Crafts reaction of 4,7-dihidroindole (1) with enone
2a and structure of BINOL-type ligands used in this study.
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giving the reaction product in good yield (74%) and a
better enantiomeric excess (59 %) (entry 2). L2–L5 BI-
NOL-type ligands, which contain electron-withdrawing
groups at the 3,3 0 and 6,6 0 positions as well as a tetra-
hydrogenated ring were evaluated also in the presence
of Zr(OtBu)4. Ligand L5 led to the best result (79% yield,
71% ee) (entry 7). Different solvents (ClCH2CH2Cl,
CHCl3, ether, THF, and toluene) temperatures and
catalyst loadings were screened. However all these
changes had a negative influence on the catalytic activ-
ity,11 especially on the enantioselectivity.

With this set of reaction conditions12 in hand the appli-
cability of the reaction with other a,b-unsaturated
ketones was investigated (Table 2). Enones 2 with a
sterically demanding aromatic group bound to the car-
bonyl group and an aliphatic group linked to the C–C
double bond produced alkylated indoles in excellent
yields and moderate enantioselectivities (entries 1 and
2). The reaction with related enones containing an elec-
tron-donating group on the phenyl group had a lower
reaction rate than with enones containing an electron-
withdrawing group (entries 3–6 vs entries 7 and 8). In
all cases the yields were good but the enantioselectivities
were moderates. The best result was obtained with en-
one 2c, bearing a p-MeC6H4-substituent on the carbonyl
group, which gave the reaction product 3c in good yield
(73%) and with enantioselectivity (78%). In addition, 2-
naphthalene 2i and heteroaromatic 2j, 2k enone deriva-
tives can also serve as substrates in this reaction, giving
the corresponding 2-alkylated indoles in good yields
and with moderate enantioselectivities (entries 9–11).
Unfortunately, the reaction is limited to enones with
R1 aromatic or heteroaromatic groups. Enones 2
bearing an R1 aliphatic group (R1 = Me, R2 = Ph, or
R1 = Me, R2 = i-Pr) reacted very slowly with 4,7-
dihydroindole (1) under the optimized conditions.

The structures of products 3 were determined by 1H
NMR, 13C NMR, and HRMS.13 An interesting struc-
tural feature of these 2-alkylated indoles 3 is the 1,5-dis-
position between the carbonyl carbon of the side chain
and the nitrogen atom of the indole ring, which could
allow an intramolecular reaction to give pyrrolo[1,2-a]
indole compounds14 (Scheme 2). In fact conversion of
compound 3a into compound 4a took place spontane-
ously and was complete within 24 h in CDCl3 in the
NMR tube.15 The structure of this compound was per-
fectly established by spectroscopic data.16
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In summary, we have developed an efficient strategy to
access 2-substituted indole derivatives in enantio-
enriched form. This strategy is based on the one-pot
catalytic asymmetric Friedel–Crafts reaction between
4,7-dihydroindole as nucleophilic reaction component
and an a,b-unsaturated carbonyl compound as electro-
philic partner followed by a p-benzoquinone oxidation.
The enantioselective reaction is based on the use of BI-
NOL-type-Zr(OtBu)4 complexes as catalyst and the
reaction proceeds in good yields and moderate enanti-
oselectivities. The use of ligands that are commercially
available in both enantiomeric forms, and a simple
experimental procedure at room temperature constitute
additional advantages of this method.
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